今天小编分享的科学经验:全新神经网络架构KAN一夜爆火!200参数顶30万,MIT华人一作,轻松复现Nature封面AI数学研究,欢迎阅读。
一种全新的神经网络架构 KAN,诞生了!
与传统的 MLP 架构截然不同,且能用更少的参数在数学、物理问题上取得更高精度。
比如,200 个参数的 KANs,就能复现 DeepMind 用 30 万参数的 MLPs 发现数学定理研究。
不仅准确性更高,并且还发现了新的公式。要知道后者可是登上 Nature 封面的研究啊 ~
在函数拟合、偏微分方程求解,甚至处理凝聚态物理方面的任务都比 MLP 效果要好。
而在大模型问题的解决上,KAN 天然就能规避掉灾难性遗忘问题,并且注入人类的习惯偏差或领網域知识非常容易。
来自 MIT、加州理工学院、东北大学等团队的研究一出,瞬间引爆一整个科技圈:Yes We KAN!
甚至直接引出关于能否替代掉 Transformer 的 MLP 层的探讨,有人已经准备开始尝试……
有网友表示:这看起来像是机器学习的下一步。
让机器学习每个特定神经元的最佳激活,而不是由我们人类决定使用什么激活函数。
还有人表示:可能正处于某些历史发展的中间。
GitHub 上也已经开源,也就短短两三天时间就收获 1.1kStar。
对 MLP" 进行一个简单的更改 "
跟 MLP 最大、也是最为直观的不同就是,MLP 激活函数是在神经元上,而 KAN 把可学习的激活函数放在权重上。
在作者看来,这是一个 " 简单的更改 "。
从数学定理方面来看,MLP 的灵感来自于通用近似定理,即对于任意一个连续函数,都可以用一个足够深的神经网络来近似。
而 KAN 则是来自于 Kolmogorov-Arnold 表示定理 ( KART ) ,每个多元连续函数都可以表示为单变量连续函数的两层嵌套叠加。
KAN 的名字也由此而来。
正是受到这一定理的启发,研究人员用神经网络将 Kolmogorov-Arnold 表示参数化。
为了纪念两位伟大的已故数学家 Andrey Kolmogorov 和 Vladimir Arnold,我们称其为科尔莫格罗夫 - 阿诺德网络(KANs)。
而从算法层面上看,MLPs 在神经元上具有(通常是固定的)激活函数,而 KANs 在权重上具有(可学习的)激活函数。这些一维激活函数被参数化为样条曲线。
在实际应用过程中,KAN 可以直观地可视化,提供 MLP 无法提供的可解释性和互動性。
不过,KAN 的缺点就是训练速度较慢。
对于训练速度慢的问题,MIT 博士生一作 Ziming Liu 解释道,主要有两个方面的原因。
一个是技术原因,可学习的激活函数评估成本比固定激活函数成本更高。
另一个则是主观原因,因为体内物理学家属性抑制程式员的个性,因此没有去尝试优化效率。
对于是否能适配 Transformer,他表示:暂时不知道如何做到这一点。
以及对 GPU 友好吗?他表示:还没有,正在努力中。
天然能解决大模型灾难性遗忘
再来看看 KAN 的具体实现效果。
神经缩放规律:KAN 的缩放速度比 MLP 快得多。除了数学上以 Kolmogorov-Arnold 表示定理为基础,KAN 缩放指数也可以通过经验来实现。
在函数拟合方面,KAN 比 MLP 更准确。
而在偏微分方程求解,比如求解泊松方程,KAN 比 MLP 更准确。
研究人员还有个意外发现,就是 KAN 不会像 MLP 那样容易灾难性遗忘,它天然就可以规避这个缺陷。
好好好,大模型的遗忘问题从源头就能解决。
在可解释方面,KAN 能通过符号公式揭示合成数据集的组成结构和变量依赖性。
人类用户可以与 KANs 互動,使其更具可解释性。在 KAN 中注入人类的归纳偏差或领網域知识非常容易。
研究人员利用 KANs 还重新复现了 DeepMind 当年登上 Nature 的结果,并且还找到了 Knot 理论中新的公式,并以无监督的方式发现了新的结不变式关系。
△DeepMind 登 Nature 研究成果
Deepmind 的 MLP 大约 300000 个参数,而 KAN 大约只有 200 个参数。KAN 可以立即进行解释,而 MLP 则需要进行特征归因的后期分析。并且准确性也更高。
对于计算要求,团队表示论文中的所有例子都可以在单个 CPU 上 10 分钟内重现。
虽然 KAN 所能处理的问题规模比许多机器学习任务要小,但对于科学相关任务来说就刚刚好。
比如研究凝固态物理中的一种相变:安德森局網域化。
好了,那么 KAN 是否会取代 Transformer 中的 MLP 层呢?
有网友表示,这取决于两个因素。
一点是学习算法,如 SGD、AdamW、Sophia 等—能否找到适合 KANs 参数的局部最小值?
另一点则是能否在 GPU 上高效地实现 KANs 层,最好能比 MLPs 跟快。
最后,论文中还贴心的给出了 " 何时该选用 KAN?" 的决策树。
那么,你会开始尝试用 KAN 吗?还是让子弹再飞一会儿 ~
项目链接:
https://kindxiaoming.github.io/pykan/
论文链接:
https://arxiv.org/abs/2404.19756
参考链接:
[ 1 ] https://twitter.com/ZimingLiu11/status/1785483967719981538
[ 2 ] https://twitter.com/AnthropicAI/status/1785701418546180326
— 完 —
点这里关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
科技前沿进展日日相见 ~
>