今天小编分享的教育经验:Hugging Face王铁震:有人的地方就会有江湖,有开发者的地方就会有社区,欢迎阅读。
"开放性平台创造了比封闭式平台高1000倍的价值。只要我们能够通过开源社区把这个饼做大,即使捕获这个价值的1%,也可能比独占未开放产品100%份额的价值更大。"
"我们的转型取得了巨大的成功,但在当时其实是一项相当大胆的决策。过去并没有太多开源社区成功转型为商业公司的案例。这个过程也并非一帆风顺。比如,去年年终的时候GPT-3出来了,这个模型特别火,但OpenAI也在那个时候就决定不开源了,这对开源社区来说实际上是一个非常大的打击。"
"什么是潮流?什么是酷的?这实际上是被时代定义的。如果有一天通过ChatGPT写程式、搞一些AI应用变成了一个很酷的事情,那我觉得AI行业的发展就没问题了。这是我比较浪漫主义的想法。"Hugging Face工程师王铁震说。
Hugging Face,AI开源社区的当红炸子鸡,被称为AI界的GitHub。成立于2016 年,近一年来估值翻了一翻,飙升至45亿美元,谷歌、亚马逊、英伟达、英特尔、Salesforce等科技巨头纷纷参与投资。
Hugging Face的Transformers库是最快超100k的GitHub项目;迄今为止社区成员总共分享了超过 423k 个模型公开模型和超过84k 个公开数据集;有超过5万家组织使用Hugging Face;它不仅开发了Transformers库(目前最受欢迎的大语言模型库),也提供了各种构建、部署和训练机器学习模型的工具和资源……
今天,Hugging Face工程师王铁震老师做客混沌,带来课程《开源世界观:如何用技术浪漫主义实现AI普惠》。为你揭开Hugging Face的神秘面纱,带你了解开源世界观与落地实践。
以下为课程笔记:(篇幅所限,文章内容仅为部分课程内容,请前往混沌APP看完整课程)
授课老师|王铁震 Hugging Face工程师
编辑|混沌商业研究团队
支持|混沌前沿课
Hugging Face是谁?
大家可能经常在媒体上看到,最近又有一个有趣的东西在Hugging Face上发布了,但又不太了解我们。
实际上Hugging Face是一个AI开源社区,可以把它理解为AI届的GitHub。Hugging Face现在的估值达到了45亿美元,上面有超过100万个AI模型和数据集、展示。迄今为止,使用过Hugging Face的组织超过5万家,迄今为止社区成员总共分享了超过 423k 个模型公开模型和超过84k 个公开数据集。除此之外,Hugging Face还提供大模型领網域生态底层的一些开源资料库,比如Transformers,这也是GitHub上最快达成star数量10万里程碑的开源项目之一。
自2016年起Hugging Face就开始启动了,最早它是一款面向青少年有趣好玩的聊天机器人应用軟體。我们当时做的还不错,成功进行了B轮融资。随着Transformer结构的出现,我们也积极拥抱新技术。在2018年,我们参加了NeurIPS dialog competition这个竞赛,拿了第一名。随后我们做了一件很不一样的事,那就是将这个Transformers模型开源了。它大受欢迎,越来越多的模型被大家集成在了这个库里。红线是这个Transform库的增长曲线,大家可以看到它增长得非常快。
然后我们就遇到一个问题,到底是继续做原先的聊天机器人,还是要做开源?尽管聊天机器人做得不错,但我们的几个创始人心里有个更大的图景,就是促进人类高效合作。所以我们决定进行转型,放弃聊天机器人,转而致力于建立AI开源社区。
开源社区在我们看来,是非常有价值的。
首先开放性平台创造了比封闭式平台高1000倍的价值。只要我们能够通过开源社区把这个饼做大,即使捕获这个价值的1%,也可能比独占未开放产品100%份额的价值更大。
做一个开源社区,其实也给我们很多信息上的优势。如果你闷头做自己的产品,可能就忘记了外面的世界发生了什么。作为创业者,其实最重要的是要积极地去听取开源社会的开源信息,跟大家做更多的交流。不是说现在就去想一个十年之后的计划,可能我们一年之前都没有想到ChatGPT和生成式AI会有这么火。做开源社区,收集到更多声音,一起去推动行业的前进,其实是更有价值的。
另外,开源的透明也会带来好处。很多程式员并不希望自己的作品被用于AI训练,开源数据集可以让创作者清楚地了解数据的使用情况。通过查看网站,他们可以知悉是否有人在使用其代码进行训练,并提出声明要求移除代码,开源赋予了其在互联网上被遗忘的权利。
如今看来这个转型的决定取得了巨大的成功,但在当时其实是一项相当大胆的决策,因为过去并没有太多开源社区成功转型为商业公司的案例。这个过程也并非一帆风顺。
比如,去年年终的时候GPT-3出来了,这个模型特别火,但OpenAI也在那个时候就决定不开源了,这对开源社区来说实际上是一个非常大的打击。所以我们也与几位合作伙伴共同推动了BigScience项目,我们发布了BLOOM这个最早在100B以上、支持多语言的开源模型。在商业授权方面,BLOOM几乎没有任何限制。它不仅授人以鱼,更是授人以渔。我们走过的所有弯路、积累的所有经验都公开到开源社区之中,为后来者提供了一个示范。
篇幅所限,本文内容仅为课程十分之一
点击海报,看完整课程!
开源社区的商业模式与组织机制
1)Hugging Face创造了哪些有意思的活动与产品
Hugging Face是一个从社区中成长出来的公司,社区既是我们最重要的积淀,也是我们最大的壁垒。那我们社区的底色是什么呢?实际上不是赚钱,是Have fun,大家都是因为兴趣加入进来的。
你可能没有Machine Learning的学位,也没读过这个领網域的书籍或论文,但技术发展至今,实际上并没有把这一领網域的门槛拉高,反而将门槛降低了。我有个朋友对我所从事的事业一无所知,觉得大模型玄而又玄,但我给他分享了一个开源库之后,他只需点点滑鼠就可以创建出他想要的图文。一个月之后,他已经成为那个领網域的专家了,虽然他不会写代码,但是他会画图,也知道自己想要的图是什么样子的。我有给他付工资吗?没有。他在上面有获得什么实际的利益吗?也没有,但这个东西好玩,它满足了他从小以来一直都有的画家梦想。
我还向一个媒体朋友科普了开源社区,他在了解并使用之后告诉我,他现在感觉一天二十四小时根本不够用,每天都有太多事情在开源社区发生。开源实际上将大家从不明真相的吃瓜群众变成了事件的参与者,因为所有的代码和讨论都是公开的,任何人都可以溯源了解事情的始末,与KOL进行互动,甚至以这种方式自己逐渐成为KOL。
我相信很少有公司员工下班之后还愿意查看内部沟通軟體,但我们公司的员工每天刷公司的Slack刷得停不下来,就把它当成Instagram或者小红书来刷,甚至觉得时间不够用。为什么呢?因为做开源,能够把他的兴趣和工作结合在一起。如果你让我去做别的事情,我可能个人兴趣也是天天去看AI界发生了什么,现在还有人付钱让我去看AI界发生了什么,我觉得非常开心。
所以这就是Have Fun。无论是对社区的使用者,还是于社区本身而言,Have Fun都是一件极其重要的事情,乐趣和工作同时存在。
正是由于大家在工作中能获得乐趣,每个人都投入了很多精力,公司的生态系统也生长得非常迅速。我们去年是以Transformer为基础的几个库,到今年已经形成了一个完善的生态系统。基于Transformer结构的大模型库,Diffusers是图文生成领網域的基础库,解决模型安全问题的库Safetensors等等,都已经成为整个社区非常重要的基础库。
除了自己玩得开心,我们也举办了很多活动希望吸引更多人参与其中。比如在谷歌的支持下,我们获得了免费的TPUV3资源,让大家发挥自己的创意进行模型训练。我们还在国内开办了一个Diffusion model class分享扩散模型的内容,还把课程内容翻译成了中文出版成书。
2)Hugging Face的组织架构
我们的组织中绝大多数成员是工程师,超过90%。与国内的一些社区不同,我们没有专职运营人员,每个工程师都参与运营。因为我们的根基就是社区,大家都是从社区中成长起来的,也非常懂社区运作之道,知道大家是怎么从小白成为社区的贡献者,再成为社区的创造者。我记得刚进公司的时候,有一个开发者写了三行代码,本来只是随手做了一些事情,结果收到了许多祝贺,让他感到非常开心,那一瞬间甚至以为自己得了诺奖。这种开源心态让大家觉得,来开源社区不仅是一件有趣的事,而且能够找到家的感觉。
3)开源社区的合作与决策机制
我们公司采用分布式的工作和决策模式,是非常有意思的。在工作方式上,所有员工都是远程办公,不需要去办公室,因此我们会通过邮件和Slack进行异步沟通。并且很多沟通并不是在公司系统内部完成的,而是在公开的渠道,比如GitHub上进行。
另外一点也非常重要,我们的决策也是分布式的。我刚进公司的时候,因为之前在大公司待了很多年,觉得要先师出有名,先让老板批准,于是我写了六页的一个计划书,说我要做一个什么东西。老板看了之后说,你写得非常好,下次不要写了。只要跟我说你做了什么,有很多事情你可以自己决定,你不需要等我。
这也是为什么我们几个人就可以做非常多的活动,第一我们不开会,第二个我们每个人都可以做决定。很多事情老板都鼓励大家自行决定,无需进行大型的会议讨论或是等待来自总部的批准。在这里工作,你会有很强的参与感,而不会觉得自己只是大公司一枚不起眼的螺丝钉。另外,我们公司内部没有明确的部门间的界限,每个人都可以提出自己的想法,大家一起商量并通过合作加以实现。
我们是一个不到二百多人的小公司,等我们有一万人的时候,我相信也不会是这样的治理方式,当然这是另外一个问题,要不要成长到有有一万人的公司?也可能我们觉得小而美挺好的。
我们现在的公司内部其实并没有像OKR这样的内部治理模式,目前还处于一个比较有趣的阶段,员工的薪水可能相对较低,但由于公司自由度较高,鼓励大家不断进行探索,所以员工更愿意留在这里发挥主观能动性。在招聘方面,我们公司其实比较严格,入职者大多是在开源社区有一定影响力的人。我们并不是以传统的算法作为筛选人才的标准,而是对候选人在行业的号召力和过去的数字足迹进行考察,这样就确保了新进人员的价值观与公司一致,并且在很大程度上能够在公司内产生积极影响。
国内公司传统的发展模式是大公司垄断所有人才,内部事务对外不透明。相比之下,开源社区的模式更适合小公司,公司内部的事务高度透明,大家可以通过参与开源项目与CEO直接对话。企业间的合作也变得更加简单直接,无需签署各种繁琐的協定,在开源社区提出合作想法即可。很多公司可能也想要追求类似我们公司的发展模式,但我们也是在天时地利人和的条件之下才实现了这一点。我猜测,这种更透明、更易于互相连接的企业模式可能是未来发展的一个明确方向,而这也是得益于开源领網域的不断发展。
4)Hugging Face作为开源社区,如何在商业上盈利?
第一,咨询服务,提供咨询服务是开源项目最常见的盈利模式。企业在使用我们的开源库时,遇到问题会自然而然地想要咨询我们。我们在Slack上与用户交流,解答问题,提供较为简单的咨询服务。
第二,硬體服务,我们通过HPP(Hardware Partner Program)提供硬體服务。芯片公司希望将他们的芯片销售出去,但由于云服务商主要支持NVIDIA GPU,其他厂商的产品在軟體上很难适配。我们与硬體厂商合作,将下层的NVIDIA GPU接口替换为其他厂商的接口,就用户的使用而言并没有任何差别,只需要支持Transformer就可以,从而使得硬體厂商更易销售他们的产品。
第三,SaaS服务,比如AutoTrain,就是一个无代码的模型训练服务。用户只需上传模型并提供训练需求,剩下的工作AutoTrain会自行完成。训练完成后,用户通过Inference endpoints将模型部署在Hugging Face上之后就可以直接调用它进行工作。
5)如何做一个开源社区
第一,如果要做一个开源的项目,最好第一天就要想着走向世界。开源这件事很多都是在GitHub、Hugging Face这样的全球化社区完成的,要从一开始就设想这个开源项目是要服务全人类的,比如使用英文进行项目配置,这样能更好地与全球的开发者进行互动。
第二,快速验证可行性。很多开源项目都是在公司从上到下的推动下进行的,一开始就获得了巨大的流量,但是流量并不是开源项目成功的唯一要素,做开源最重要的是不停地进行尝试,找到特定生态位上的独特价值,快速地失败,快速地总结。
第三,积极吸取社区中的各种反馈。无论是正向意见还是负面评价,都应当积极对待。在社区中创建一种家的氛围,才能够让社区成员在不断的参与互动中共同成长。
第四,专注于特定的任务。很多国内的公司都在追求一个无所不能、包容万象的东西,而开源世界所期待的是一个个具有特定价值的小项目,并通过堆砌多个项目实现更大的目标。
第五,关注开发者的体验。与关注用户体验相同,开源社区的特殊性决定了其还要关注开发者在其中的体验和感受,以确保社区的活力和项目的质量。
篇幅所限,本文内容仅为课程十分之一
点击海报,看完整课程!
1)大模型创业未来还有没有机会?
第一,最重要的是信念。大家说的成本、使用场景难易度等问题,我觉得都会得到解决,就像一年前的我们绝对想不到今天的世界是这个样子。现在大家可能觉得开源还差点劲,可能明年开源模型就真的有GPT3.5、4的水平。只有拥有坚定的信念,你才会有勇气全力以赴。如果只关注眼前的不足,你可能难以下决心去行动。但等你明白这一点时,机会可能已经错过了。
第二,选择比努力更重要。在新技术的发展方向中,也许你选择做了一个非常轻量级的应用,但是却远不如大平台它们已有的体量,就很容易被它们的推进力吃掉。2015年、2016年的时候,安卓刚刚推出来,手机这个赛道非常火。我有一个同学做了一个打开手电筒的应用,还做了一个一键关闭WIFI的应用,最高一个月可能赚了四五万美元,但是后来这些东西全部变成了系统自带的功能,瞬间他就变得很沮丧,觉得如果当时做了一点别的东西,现在可能已经有了更好地积累。
那选择什么呢?要么是降本,要么是增效。我觉得在国内场景下增效可能比降本更重要,因为上一波AI其实做得非常成功,降本的空间微乎其微,所以这条路走不通的话,不如想象增效,有哪些事情是以前做不了的,或是有哪些事情可以做得比以前更好的。比如说之前提到的代码生成模型,有数据显示这个模型可以将工程师的工作效率提高20%到30%。我们的目标不仅是要想提高员工和企业的效率,更重要的是确保每个使用这项技术的人也能感到开心。
第三,走向高度的定制化。在未来,我认为代码生成能力将会促使世界变为需求驱动。我需要什么样的軟體,就告诉ChatGPT,让它帮忙生成一个軟體,或者说让ChatGPT生成一个简单的脚本,可以满足大家具体的需求,解决各自的问题。我觉得这种特定场景下所形成的定制化信息将会越来越多。
第四,智能的分发。工业革命解决了商品的分发问题,而信息革命带来的是信息的分发。信息分发与智能分发是有一定差别的,我们看到一本书,并不是就完全理解了书的意思。以心理咨询行业为例,那么多的教科书、那么多的课程,我们可能需要花费三五年的时间把他们全都学会,再形成智能去帮人解决心理问题,但是一旦训练了一个大模型,这个模型就可以进行心理问答,能够直接帮人回答心理上的一些咨询问题,这就可以快速地让更多的人体会到过去高阶专家才能带来的服务,并且这个价格会降得很低很低。
2)AI Agent机会
小时候用计算机,经常听到比尔盖茨的一个说法,他说,我希望在未来每个人的桌子上都有一台Windows。这个梦想其实已经实现了,他最近又有一个判断,他说,AI Agent会改变你使用电腦的方式。我深受启发,我觉得AI会带来一种巨大的变革。
在《流浪地球》中有个片段,就是说月球基地上其实有很多的工程器械,唯独缺少一个电腦主机对它们进行控制。后来他们从地球上带来了一台新的计算机550C,计算机接入网络之后首先去发现周围有哪些工具,有哪些器械,然后和这些器械建立了一个联结,并且学会了使用这些器械的方法,再去对它们进行统一调度。这其实比较像我所向往的AI的最终模式,AI Agent作为大模型的延伸,作为大模型的手和脚,大概要经历使用工具、选择工具、发现工具、创造工具四个阶段。
非常早期的时候,我们做了一个Transformer Agent,它从用户那里拿到一个指令之后,会从我们给它提供的一些给定的工具中进行选择,再生成一段代码来调用这个工具,最后完成任务。再来看看现在的产品,以Perplity.AI为例,我同时问了它两个问题,一是Hugging Face是做什么的,二是它什么时候发布了Diffusers这个库。它就会使用工具拆解我的问题,然后从数据库里找到16条资料,最后从资料中提炼出一个最终回答。尽管我发现它给出了错误的回答,但是我可以给它一个反馈,这就是所谓的人在回路。
3)范式变革:AI vs 互联网,商业模式的重构机会
未来互联网盈利的范式到底是什么?在过去,像谷歌这样的搜索引擎其实是在卖广告,你搜索一个关键字,它就会给你推荐一些相关的产品。淘宝、抖音也是类似的模式。但这真的就是未来最合适的模式吗?
现在为什么会有很多人愿意使用New Bing,或者Perplexity进行搜索,因为用它搜索更高效,如果想找一个什么东西,不需要提供很精确的关键字,它们就会给我一段需要阅读很多文章才能总结出来的答案。如果有一天它们走向广告模式,我问它一个东西,它就给我回答一个广告,那我就不会用它了,我还不如用搜索引擎。这种广告模式实际上跟生产力是反着来的。现在大家对大模型这么感兴趣,其实也是因为我们相信它可以带来更高的生产力。我认为在未来我更愿意为高生产力付费,比如有一个知道我所有偏好的Agent,可以在我想要买东西的时候,在不同的平台上找到我想要的东西,然后帮我计算好折扣模式,并且对比出不同平台上的价格。
4)多模态的机会
无论是Perplexity还是大模型,它们都是一个文字进文字出的单模态模型,而ChatGPT-4V最近已经可以做到看见、听见、说出。ChatGPT-4V的官方Demo讲述的就是在修车场景中,如果没有多模态模型,很难向ChatGPT描述清楚车到底有什么问题。有了多模态的理解,把图片传给它,它就可以告诉我们车哪里有问题,应该用什么工具去修。这对打开其在生活中的使用场景有很大的帮助。
我觉得这个领網域会衍生出非常多的机会,当然做一个多模态模型的成本是远远高于做一个普通大模型的,我们也希望能够有更多人参与到开源社区之中,一起推动这个领網域的发展。
多模态生成也是一个非常有意思的话题。基于Diffusers这个数据库,通过Stable Diffusion的这个模型可以生成出非常好的宇航员的照片,包括面罩的反光等都已经能够做到很好的效果。最近也看到很多视频生成、音频生成,我相信多模态生成技术有非常多的应用机会。
有人的地方就会有江湖,有开发者的地方就会有社区。围绕着刚才所说的Stable Diffusion这种文生图的多模态生成模型,其实也慢慢就形成了一个非常有名的社区,叫CIVITAI,很多人在这上面交流自己做的文生图的模型。和小红书一样,它也是一个社交平台,只不过大家交流的不是照片或者感悟,而是进行模型的交流,智能的交流。甚至说智能分发普及之后,也许大家在社交媒体上点击一下对方,看到的并不是对方生成的内容,而会有一个活生生的人在那里等着与你进行互動。
5)从线下到线上再回归现实
我一开始看到AI文生图的图片时,觉得非常惊艳,但是看多了CIVITAI上这些漂亮的图片之后,就发现它们都缺少一种真实感、沉重感。这些图片并不是我想要的,我现在反而更喜欢看我五岁的宝宝画的画,因为是他用自己的理解和自己的感受在作画。
现在大家都在讲,把这个搞成VR,那个搞成VR,好像加上VR就会变得有趣且酷,从而获得很多流量。也许在未来大家就开始说,把VR摘了吧,现实世界更有乐趣一些。
在我小时候,有人做了一个实验,把一堆人关在房子里,一整天都不能出门,必须使用互联网完成生活的一切操作。ChatGPT刚出来的时候我也做过类似的事情,就是强迫自己过一个ChatGPT Day,在那一天我必须通过ChatGPT完成所有的事情,包括写的邮件、回复的消息。那天我其实过得很痛苦,我想有一天我会怀念今天这样完全不用生成式AI就能过得很好的日子。
6)AI与大模型可能带来的风险
第一,偏见。比如做文生图的时候,想生成一个科学家的图片,那么模型就会从数据库中找到与科学家相关的东西进行生成。你去看包括Stable Diffusion的模型数据,大多数与科学家相关的图片都是以白人男性科学家为主体,因此它生成的图片也大多是白人男性的形象。
我们会发现,由于数据的局限性,大模型在很多时候都会有一些偏见。因此,通过开源的方式,可以让每个人都可以检查数据集的内容以及与自己的关系,从而对数据集进行反馈,并进一步调整生成式AI模型的输出。
第二,幻觉。比如说问ChatGPT某个人是谁,它的回答其实会出现很多错误。为什么会出现这样的问题?如果把大模型比作人,就容易理解了。我们疲惫或者迷糊的时候,也比较容易说错话,大模型也是一样,甚至没有我们人类聪明,偶尔说错也是可以理解的。有的时候我们是希望大模型有一些幻觉的,否则它只会陈述事实,就永远无法想象一个架空的宇宙,永远不能进行小说创作。
因此,当大家用大模型做一些产品的时候,可以考虑如何利用幻觉或避免幻觉。比如在教育领網域,幻觉问题实际上是非常严重的。训练模型可能学了很多东西,但它是一个闭卷考试,所以做题过程中可能会出错。而RAG是一个开卷考试,大模型会搜索出各种相关的参考资料,找到对应的确凿的证据后再进行回答。因此,有时候幻觉可以通过RAG去避免。
由于大模型创作存在IP风险,因此很多企业不太敢使用生成式AI去做一些事情,担心生成的东西与数据库中没有获得创作者许可的东西长得太像了,从而会有法律风险。Microsoft Copilot和Adobe在軟體的使用協定中加了一段说明,说如果用户使用它们的軟體生成了某种东西,并且具有法律风险的话,它们来扛这个责任。这样的做法就能避免大家在很多场景中使用生成式AI模型的顾虑。
我之前在西电读的应用物理,后来去法国的一个学校进行交换学习。在法国读书的经历对我影响蛮大的。这个法国学校实际上是一个通才培养的学校,学制三年,前两年半什么都要学,到了最后半年才开始选专业。
这段经历给了我一种勇气,我觉得转行做另一件事不是那么可怕了,好像什么东西我都懂一点。我也敢于迈出第一步,去尝试、去学习。五六年前我还在做通讯相关的东西,但是我觉得AI这个东西我也可以学,所以就勇敢地去尝试,试图转行。
毕业后,我进了谷歌云工作,做的是TensorFlow这个深度学习框架。谷歌把TensorFlow开源出来了,所以我们和开源社区有非常多良好的互动。开源社区是一个神奇的地方,因为参与开源的很多人其实是不赚钱的,大家只是为了开心,为了好玩,在开源社区信息交流非常快,大家也能接触到很多志同道合的人,所以我特别喜欢开源。后来我转入到一个非开源的部门,我感觉自己好像和整个技术界脱轨了,我还想要回到开源,于是就加入Hugging Face。
智能分发以后,很多需要十年苦读才能学习到的技能很轻易地被ChatGPT所赋能了。比如原本写程式可能得写个三千小时才能写得非常好,现在ChatGPT一下子就把我的能力提高了,只要看得懂程式,就可以在自己需要的时候写出相应的程式。同样地,只要我有审美就可以画画,只要知道什么是好作品就可以写小说。如果机器给我生成了一个不好的作品,我就可以调换一下参数,重新生成一个。
我们马上就会看到ChatGPT对我们工作场合的影响。有时候我们会发现我们的工作重心因为技术的转变而有所变化,能否积极地拥抱这个变化,我认为是非常重要的。
最早大家对程式员的刻板印象就是木讷,不解风情,每天穿格子衫。后来阿里巴巴上市了,杭州房价炒高了,程式员赚得比较多,大家就开始羡慕程式员。大家羡慕的真的是程式员在做的事情吗?其实不是,人们大多只是羡慕程式员获得了世俗上的成功,但对写程式这件事的看法并没有本质变化,还是会觉得这是一件呆板的事,也会觉得程式员到35岁就要转行了,应该提早布局。
选专业的时候,我本来想选数学,但是家里所有的亲戚长辈都跟我说,学数学有什么用,出来就是当个老师。我其实非常喜欢数学,但是还是会受到国内这种世俗观念的影响。到法国之后,我发现法国人好喜欢数学。在法国读大学前会有一个预科班,这些选择数学为专业的人都会很自豪地说这件事。法国也出了很多著名的数学家,笛卡尔、费马、帕斯卡,拉格朗日、泊松、拉普拉斯、柯西,全都是法国人。
这些法国人这么自豪地说自己是学数学的,于是我就很好奇,他们学数学到底是为了什么?我发现他们很多人学数学是觉得好玩,喜欢头腦风暴这个过程。中国人的思考方式偏向于实用主义,在国内可能很多人觉得学数学不是那么酷,但在巴黎有一百多条街道,还有很多广场和车站是用数学家的名字命名的。
什么是潮流?什么是酷的?这实际上是被时代定义的。如果有一天通过ChatGPT写程式、搞一些AI应用变成了一个很酷的事情,那我觉得AI行业的发展就没问题了。这是我比较浪漫主义的想法,我感觉有了生成式AI的能力之后,每个人都可以变成程式员,通过写程式让自己的生活工作更高效。前段时间参加中国开源年会的时候,我已经感觉到这样的苗头了,很多初中生、小学生已经能用生成式AI做很酷的事情了。
《流浪地球》对我启发很大。我觉得无论AI怎么发展,人始终扮演着非常重要的角色,就像之前提到的Perplexity的例子,AI给了我们一些信息,我们也会再把自己的想法反馈给它。
在《流浪地球中》,550W从一个冰冷的自感知/自适应/自组织/可重塑编译计算核心进化为了一个更高级别的人工智能生命一MOSS。MOSS说"人类的命运取决于人类的选择"。在一个人与机器共存的社会里,我们每个人都是变量。坚持开源也许是对人类未来更有意义更有帮助的方式。
如何从技术和产品角度了解大模型原理?
篇幅所限,本文内容仅为课程十分之一
点击海报,看完整课程!
>