今天小編分享的教育經驗:北京就促進AGI創新發展措施征集意見,加快建設海澱區“北京人工智能公共算力平台”,歡迎閲讀。
圖源:Pixabay
芥末堆文 近日,《北京市促進通用人工智能創新發展的若幹措施(2023-2025 年)(征求意見稿)》公布,從算力、數據、算法、應用、監管五大方向,對北京大模型發展提出了 21 項措施,于 5 月 12 日至 5 月 19 日面向公眾征集意見。
征求意見稿提出的五大監管方向和 21 項措施具體如下:
一、加強算力資源統籌供給能力
(一)組織商業算力定向滿足本市緊迫需求
加強與頭部公有雲廠商等市場主體合作,實施算力夥伴計劃,并确定首批夥伴計劃成員,明确供給技術标準、軟硬體服務要求、算力供給規模、優惠策略等,向在京高校院所和中小企業公布一批優質算力供應商。
(二)高效推動新增算力基礎設施建設
将新增算力建設項目納入算力夥伴計劃,加快推動海澱區 " 北京人工智能公共算力平台 ",朝陽區 " 北京數字經濟算力中心 " 等項目建設,快速形成規模化先進算力供給能力,支撐千億級參數量的大型語言模型、多模态大模型、大規模精細神經網絡模拟仿真模型、腦啓發神經網絡等研發。
(三)建設統一的多雲算力調度平台
利用政府統一入口,降低公有雲采購成本,普惠中小企業,同時減少企業分别面對不同雲廠商的溝通成本。針對彈性算力需求,建設統一的多雲算力調度平台,實現異構算力環境統一管理、統一運營,方便企業在不同雲環境上無縫、經濟、高效地運行各類人工智能計算任務。建設北京與河北、天津、山西、内蒙古等省(市)算力集群的直連基礎光傳輸網絡,進一步提升平台對四地算力資源感知能力,探索開展算力交易。
二、提升高質量數據要素供給能力
(四)歸集高質量基礎訓練數據集
針對目前大模型訓練高質量中文語料占比過少,不利于中文語境表達及產業應用的問題,整合現有開源中文預訓練數據集和高質量互聯網中文數據并進行合規清洗。同時持續擴展高質量多模态數據來源,建設合規安全的中文、圖文對、音頻、視頻等大模型預訓練語料庫,通過北京國際大數據交易所社會數據專區進行定向有條件開放。
(五)打造 " 國家數據基礎制度先行先試示範區 ",謀劃國家級數據訓練基地
加快推動數據要素高水平開放的 " 國家數據基礎制度先行先試示範區 " 建設,争創國家級數據訓練基地,提升北京人工智能數據标注庫規模和質量。倡議高質量數據網站所屬企業提供部分脱敏高質量數據,進行定向有條件開放,企業或科研機構通過在線申請進行有償使用,并探索基于數據貢獻、模型應用的商業化場景合作。
(六)搭建數據集精細化标注眾包服務平台
建設指令數據集及多模态數據集眾包服務平台,開發集成相關工具應用的智能雲服務系統,鼓勵并組織來自不同學科的專業人員标注通用人工智能模型訓練數據及指令數據,提高訓練數據的多樣性,給予貢獻者适當獎勵,推動平台持續良性發展。
三、系統布局大模型技術體系,持續探索通用人工智能路徑
(七)開展大模型創新算法及關鍵技術研究
圍繞大型語言模型構建、訓練、調優對齊、推理部署等全流程,支持開展創新算法及核心技術研究,形成完整高效的訓練體系并對外開源。探索多模态通用模型架構,研究大模型高效并行訓練技術,以及邏輯和知識推理、指令學習、人類意圖對齊等調優方法,研發支持百億參數模型推理的高效壓縮技術。
(八)加強大模型訓練數據采集及治理工具研發
從 " 采、存、管、研、用 " 五個方面,研發包含數據采集、清洗、标注、脱敏、存儲等功能在内的數據處理工具。重點研究互聯網數據全量實時更新技術,多源異構數據整合與分類方法,數據管理平台相關系統,數據清洗、标注、分類、注釋等軟體工具及算法,數據内容安全審查算法及工具等。
(九)開放大模型評測基準及工具
構建多模态多維度的基礎模型評測基準及評測方法。建立基礎模型評測工具集,提供适應性的工具進行評測。建立公平高效的自适應評測機制,根據評測目标的不同,自動适配不同的工具和指标。研究人工智能輔助的智能模型評測算法,面向主觀型或生成式的任務,構建自動化評估工具。集成包括通用性、高效性、智能性、魯棒性在内的多維度評測工具,構建基礎模型線上評測服務平台。
(十)推動大模型基礎軟硬體體系研發
支持研發分布式高效訓練系統,實現模型訓練任務高效自動并行。研發适用于模型訓練場景的新一代人工智能編譯器,實現算子自動生成和自動優化,推動人工智能芯片與框架的廣泛适配。研發人工智能芯片評測系統,實現多芯片多框架的自動化評測。為大模型訓練和應用提供自主創新的基礎軟硬體生态底座。
(十一)探索具身智能、通用智能體和類腦智能等通用人工智能新路徑
發展面向通用人工智能的基礎理論框架體系,加強人工智能數學機理、自主協同與決策等基礎理論研究。推動具身智能系統研究及應用,突破機器人在開放環境、泛化場景、連續任務等復雜條件下的感知、認知、決策技術。探索價值與因果驅動的通用人工智能新路徑研究,打造通用人工智能統一理論框架體系、評級标準及測試平台,研發通用人工智能作業系統和編程語言,推動通用智能體底層技術架構應用。探索類腦智能等交叉學科研究,通過大腦神經元連接模式、編碼機制、信息處理原理研究,啓發新型人工神經網絡模型建模和訓練方法。
四、推動通用人工智能技術創新場景應用
(十二)推動在政務服務領網域率先試點應用
圍繞政務咨詢、政策服務、接訴即辦、政務辦事等工作,率先實現大模型技術賦能。借助大模型語義理解、自主學習和智能推理等能力,提高政務咨詢系統智能問答水平,增強多語種互動能力。支撐 " 京策 " 平台建設,優化政策規範管理和精準服務。輔助市民服務熱線更高效回應市民訴求,深化民生大數據高效利用。提升辦事服務便利度,輔助引導辦事人員表單填寫,輔助綜合視窗人員更精準提供辦事指引,輔助審批人員提高審批效率,推進業務數據更充分共享、業務流程更高效協同。
(十三)探索在醫療領網域示範應用
支持我市有條件的研究型醫療機構提煉智能導診、輔助診斷、智能治療等場景需求,充分挖掘醫學文獻、醫學知識圖譜、醫學影像等多模态醫療數據,構建基于醫療領網域通用數據與專業數據的智能應用,實現對各種疾病和症狀的準确識别和預測,輔助醫療機構提高疾病診斷、治療和預防的決策水平。
(十四)探索在科學研究領網域示範應用
發展科學智能,加速人工智能技術賦能新材料和創新藥物領網域科學研究。支持我市能源、材料、生物領網域相關實驗室設立科研合作專項,與我市相關科研機構和創新企業開展聯合研發,充分挖掘材料、蛋白質和分子藥物領網域實驗數據,研發科學計算模型,開展新型合金材料、蛋白質序列和創新藥物化學結構序列預測,縮短科研實驗周期。
(十五)推動在金融領網域示範應用
進一步挖掘我市金融行業應用場景,系統布局一批金融機構場景開放 " 揭榜挂帥 " 項目。支持金融科技企業針對金融場景中信息負載高,信息更新快,金融從業者難以快速全面的獲取準确信息的問題,探索面向金融文本深度理解和分析的人工智能技術應用。聚焦智能風控、智能投顧、智能客服等環節,推動實現金融專業長文本的精準解析和模型知識的更新,突破復雜決策邏輯與模型信息處理能力間的融合技術,實現從復雜金融信息處理到投資決策建議的轉化,支撐金融領網域的投資輔助決策。
(十六)探索在自動駕駛領網域示範應用
支持自動駕駛企業研發多模态自動駕駛技術,發揮大型語言模型高維語義理解和泛化優勢,基于車路協同數據和車輛行駛多傳感器融合數據,提高自動駕駛模型多維感知和預測性能,有效解決復雜場景長尾問題,輔助提高車載自動駕駛模型泛化能力。支持在北京市高級别自動駕駛示範區 3.0 建設中,構建車路協同數據庫,引導企業開展基于真實場景的自動駕駛模型訓練迭代。探索基于低時延通訊的雲控自動駕駛模型測試,發展自動駕駛新技術路徑。
(十七)推動在城市治理領網域示範應用
支持人工智能研發企業結合智慧城市建設場景需求,率先在城市大腦建設中引進大模型技術,開展多感知系統融合處理技術研發,打破城市治理中各系統數據孤島,實現智慧城市底層業務的統一感知、關聯分析和态勢預測,科學調配政府資源和行政力量,為城市治理提供更加綜合全面的輔助決策能力。
五、探索營造包容審慎的監管環境
(十八)持續推動監管政策和監管流程創新
探索營造穩定包容的監管環境,積極推動人工智能領網域新技術賦能傳統行業的包容審慎監管,支持人工智能算法、框架等基礎技術的自主創新、推廣應用、國際合作。鼓勵優先采用安全可信的軟體、工具、計算和數據資源,通過改進算法等技術手段,确保訓練數據集的規範性。鼓勵生成式人工智能產品在科研等非面向公眾服務領網域實現向上向善應用。積極向國家網信部門争取,在中關村核心區建立先行先試,推動實行包容審慎監管試點。
(十九)建立常态化服務和指導機制
做好對拟面向公眾提供服務的生成式人工智能產品的安全評估工作,建立常态化聯系服務和指導機制,督促企業遵守法律法規要求,尊重社會公德、公序良俗。優化安全評估流程機制,細化對大模型算法設計、訓練數據源篩選、内容安全性、人工标注規則的審核評估标準,開展精準化服務指導,加快推進我市人工智能企業相關技術產品的安全評估工作。指導企業建立健全算法安全防範機制,在產品研發階段引入技術工具進行安全檢測,督促企業積極履行算法備案和變更、注銷備案手續。發布《北京市互聯網信息服務算法推薦合規指引》,引導創新主體樹立安全責任意識,健全管理制度、強化技術手段、促進企業算法合規發展。
(二十)加強網絡服務安全防護和個人數據保護
指導算力運營主體落實《網絡安全法》《數據安全法》《個人信息保護法》等法律規定,加強網絡和數據安全管理,明确網絡安全、數據安全和個人信息保護主體責任,強化安全管理制度建設和工作落實,鼓勵企業開展數據安全管理認證及個人信息保護認證,落實數據跨境傳輸安全管理制度,全面提升網絡安全和數據安全防護能力。
(二十一)持續提升人工智能產業倫理治理自律自治能力
落實國家新一代人工智能創新發展試驗區建設任務,加強人工智能倫理安全規範及社會治理實踐研究,研發并部署人工智能倫理治理公共服務平台,服務政府監管與產業自律自治,強化相關責任主體科技倫理規範意識,提升科技倫理治理能力。