今天小編分享的親子經驗:看過上海四大名校的“數學秘籍”,我發現以前數學都學錯了!,歡迎閲讀。
你們好!我是 biu 媽 ~
大家有沒有這樣的回憶,大部分人覺得數學好難學、刷題無止盡的時候,總有些學霸學得非常高效,題刷得并不多,但是什麼沒見過的難題、新題都考不倒他們。
有時候不禁懷疑,他們到底有什麼秘籍?還是偷偷私下猛刷題了?
去年小半因為奧數成績突出 " 小升初 " 順利上岸,正好 biu 也上小學,我就趕緊找小半爸傳授一下數學小學霸的學習經驗。
小半爸把小半一直非常崇拜的數學名師胡小群老師推薦給了我。
胡老師畢業于復旦大學數學系,曾在上海高中裏的" 四大名校 " 之一復旦附中任教多年,帶過高中實驗班,還擔任過小初高各個階段自主招生考試的 " 命題人 ",是難得既懂怎麼教數學,又懂怎麼考數學的名師。
只要是家長,都會對頂級學校的名師怎麼講課,有一點好奇吧?
我今天想分享給大家的《胡小群講數學》,就是胡小群老師把復旦附中數學組首創,并堅持了十幾年的 " 概念教學法 ",總結成了一套覆蓋課内數學和淺奧,小初高一體化的數學課程。
講真,聽過胡老師的課,我一下子覺得自己二十年的數學都白學了!
咱們傳統數學,老師講了概念、公式的定義,孩子大概理解後,很快就開始進入大量重復的習題訓練,然後學習各種解題大招、竅門。
但這樣的學習方式,沒有足夠的思考,本質上就是把概念、公式以及解題方法死記硬背了下來。
久而久之,只要一道題老師沒教過标準解法,孩子就很容易不會做,甚至都不願意去想!
▲ 圖源:網絡
但胡小群老師的課拒絕套路化教學,帶孩子們學透數學概念 " 是什麼、為什麼、怎麼來推導出來 ",無限的數學題目背後,是有限的數學思想在貫穿始終。
▲ 低年級和高年級的知識點不同,核心數學思想是一樣的
孩子小學不學透,欠的債遲早要還。胡老師説,即使是復旦附中這樣的名校,很多孩子中考數學都是滿分,但仍然有不少概念沒理解透的,上了高中,數學一下子被别人拉開了差距。
高中學不好是初中基礎不好,而初中學不好的根源在小學,所以他才想開發這樣一個小初高一體化的數學課程,把胡老師在復旦附中經過了十幾年驗證過有效的學習方法推廣開來,讓更多孩子從一開始,就用正确的方式學習數學。
要我説,這個級别的老師的課,還是貨真價實的 " 名校秘籍 ",别説一節課收幾百上千塊錢也不為過,咱們大家平時根本接觸不到。
胡老師的課将會是你最超值的一筆投入!
現在教改多麼大的動作大家都懂,不僅高考很多靈活的新題型、實際應用題型,小學生也考得越來越靈活,用老方法學數學的孩子,看到滿眼都是沒做過的題,人都得考懵了!
那些背公式、口訣的孩子遲早會被淘汰,那時候你就會看到孩子的領先了。
PS: 心急家長可以拉到後面看課程内容和購買鏈接,但我還是建議大家聽我多説幾句,這個課到底為什麼好。
03
深入理解概念
真正學會舉一反三
如今的數學教育,越來越多的人追求速成類的 100 個口訣、200 個大招,這樣的學法既無助于提升思維,也不能解決真正有區分度的難題。
比如這道經典的計算題大家應該都很熟悉:
1+2+3+4+...+99+100=?
最糟糕的講法是直接給一個求和公式,背套路。更普遍的講法是提出 " 倒序相加 "" 首尾配對 " 的方法,然後很快引出公式,開始練題。
這樣的講法,或許會讓孩子很快學會做題,但為啥要做這樣的題?這道題對以後學數學有什麼幫助?是完全不知道的。
但是胡老師會帶着孩子回到問題的底層,去找 " 解題思路是怎麼來的 "。為什麼這道題會讓孩子覺得難、很麻煩?
第一個難點就是,有太多的數要相加,常規算法算起來太麻煩。
胡老師在講課時問孩子們:我們學過什麼東西,是提升加法的運算效率的?
是乘法。
所以這道題的 " 思考方向 " 應該是,我們要把加法化成乘法,來提升運算效率。
想到用乘法後,第二個麻煩是,怎麼才能用乘法。
根據乘法的概念,只有相同的數相加,能用乘法,但是這道題每個數都是不一樣的。
所以第二步動作是,把 " 不同的數 " 變 " 相同的數 "。100 個數每個都不同,如何把不同變相同呢?每個都不同,那就兩兩組合去嘗試,讓大的和小的配。
根據這樣的思路,孩子完全可以自己充分嘗試後,推導出連續數加法的公式:
( 首項 + 末項 ) × 數項 ÷ 2
你看,學習這道題背後最終的目的,其實是讓孩子對乘法有深入的理解,學會利用乘法的原理去解決問題。這才是學會舉一反三的真正前提。
02
小初高一體化
再無學習斷層
各位家長應該都知道 " 三年級現象 "、 " 初二現象 " 這種學習斷層現象,都説是這個階段數學難度會一下子提高很多,所以很多娃都會不适應。
但數學是一門縱向結構的學科,數學知識在小學、初中、高中等不同階段都具備連續性和一致性。
孩子有學習斷層,無非是兩個原因:
01
基礎不扎實,沒有吃透概念
到了高年級、初高中,很多孩子面對難題,最大的困難不是不記得公式、定理。而是由于知識點越來越多、越來越抽象,孩子根本不知道用哪個公式,對應的是哪個知識點。
但如果吃透了概念,學懂了原理,體會了知識點背後的數學思想,孩子會發現知識雖然變了,數學符号也更復雜了,但思考方向還是一樣的。
回到剛剛那道題,
小學可能是:1+2+3+4+ …
初中可能是:x+x ² +x ³ + …
到了高中可能是:
其解題思路與 1+2+...+99+100 也并無二致,無非是數學符号、概念越來越抽象,但數學思想、解題邏輯并沒有變。
02
老師講法不一樣,不适應
無論是學校,還是培訓機構,都不可能一個老師從一年級教到高中。
所以往往出現不同學段教學割裂和重復的現象,初中老師覺得小學老師沒講好,高中老師覺得初中老師沒把基礎打好。
而胡老師擁有 8 年復旦附中的高中教學經驗,和不同學段的命題、師訓、教材編寫的經驗。這個課程的整個體系,從一年級到高三,在設計理念和講授上有着很強的一致性和連貫性。
這個一致性,不僅體現在授課教師的統一上,更體現在數學思想的小初高貫通上。
比如給小學低年級孩子講分類,是學習" 集合思想 "的鋪墊。
▲ 小學低年級課本中的分類問題
小學高年級學習什麼是包含、學習韋恩圖,甚至學習 " 抽屜原理 " 等等經典數學題型的時候,都是在學習 " 集合思想 "。
▲ 韋恩圖,你在孩子的數學題中肯定見過
但 " 集合思想 " 又是中學階段學習 " 集合 "的重要鋪墊。
上面三張圖的數學題,看上去難度天差地别,但是背後的數學思想是一致的!但是很少有老師給孩子講明白。
胡老師這樣自上而下設計,确保學生從一年級到高三數學學習的一致性,各學段教學不割裂,避免跨學段的斷崖式下滑,從根本上确保了常年的成績穩定。
不挑教材
課内和奧數一并搞定
我身邊很多家長會糾結,要不要送孩子學奧數,一來覺得學奧數對升學、分班考更有幫助,但如果課内學一套、奧數學一套,孩子又把太多的精力都花在數學上了,那英語怎麼辦,大語文怎麼辦?
其實大家這裏有一個誤區,是把課内歸課内,淺奧是淺奧,仿佛淺奧是一些難題,需要更多的公式和套路。
但其實他們都是 " 數學 ",數學的基本原理和思想是完全相通的。
這就好比我們去學遊泳,即使是衝着職業運動員衝擊奧運會去學,也不會説自己學的是 " 奧泳 ",任何目的學遊泳,基本泳姿都是一樣的。
當把課内理解到足夠的深度以後,許多淺奧問題(包括小升初中很難的淺奧)都是一個自然的延展。
還是拿剛剛提到的 1+2+...+99+100 的例子來説,其實很多人會歸到小學的淺奧題,以為和課内沒有關聯。
但這個問題的底層,其實是對乘法的概念的深度理解,對整個小學階段學習,都非常有用。
但胡老師還帶着孩子進一步深入,還會涉及到" 對稱思想 "。因為這些相加的數, 其實是等差數列,我們如果把這些數看作是一條直線上若幹個離散的點,就可以找到無數個對稱中心。這也是為什麼,我們用 1 和 99 配對,2 和 98 配對,也能解出這個問題。
一下子聽不明白?其實沒關系,但你肯定能感覺到 " 對稱思想 " 在初高中幾何、函數學習上的重要性。
你看,誰説做 " 小奧 " 題需要另外花精力學招數?
又是誰説的 " 小奧 " 對初高中學習沒有幫助的?
而且最重要的是,孩子學得更透徹了,反而會輕松很多。因為胡老師的課完全基于課本中的基本概念和思想方法來設計内容,是帶領孩子一步步把難題拆解為簡單題的組合,梳理出核心和關鍵,不需要額外記憶 " 大招 " 刷太多的題增加負擔。
每節課只需要半小時左右,就可以高效把一個問題講透,課後的練習基本上也是半小時可以完成的量,整體進程非常高效。
再次感慨,原來掌握了學霸的底層邏輯後,咱們是真的可以學得又輕松又好,不愧是上海頂尖名校實踐了十多年的高效學習法。
EASTWEST
寫到這裏,想説幾句心裏話了。聽胡老師的課越多,我甚至覺得這個課,既可貴、又 " 可怕 "。
可貴在于,真的很難得有一位老師,願意摒棄那些看似厲害華麗的大招,真正踏實地為孩子講透基本原理。處處都在引導孩子學會思考,學會自己尋找找到 " 思考的方向 "。
久而久之,這樣他們以後面對一個未知問題的時候,願意去琢磨、思考,主動尋求解決之路。這是多麼珍貴的一種能力和精神。
可怕在于,這個 " 概念學習法 " 其實已經在頂尖學校實踐很多年。
當全國很多地方的普通孩子,還在一遍一遍重復很容易廢掉大腦思考能力的 " 題海戰術 ",甚至家長們還嫌孩子做得不夠,一味地追求學得更快、刷題更多。
而那些教育發達的地區的名校,卻早就已經開始培養孩子的底層能力,好多孩子早就從中受益,差距其實很早已經拉開了,而且是一條很大的鴻溝。
各位不妨想一想,一些孩子從小就學會獨立思考,而另一些孩子還在已經習慣了套公式而逐漸荒廢大腦的思維能力,與此同時高考正在變得越來越靈活、越來越考驗思維能力,他們以後高考中相遇,結局會如何?
再深一步説,AI 發展越來越快,拼記憶、計算、套路永遠是拼不過 AI 的,不具備真正思考能力的孩子,未來結局會如何?
這些話可能聽起來很不舒服,但真誠建議各位家長放下心裏的不平衡,咱們真的要多去和真正的學霸、名師、名校學習經驗。
而胡老師願意從上海頂尖兒的名校講台走下來,給所有普通的孩子從頭搭建數學體系,平均算下來一節課不到十塊錢,外面培訓班的零頭都沒有,我簡直稱之為 " 做慈善 "!
如果你希望孩子——
深入掌握理解課本知識點,降維打擊校内學習,确保校内高分
從課内到淺奧,學透小升初核心模塊,決勝擇校及分班考
通過小初高一體化的教學,為初高中學習做好準備
那麼接下來每個階段課程的具體介紹,大家一定要認真閲讀哈。
《胡小群講數學》課程介紹
這次咱們開團的《胡小群講數學》,主要分為三個階段
0-2《小學數學一步到位》
3-6《小學數學一步到位》
7-9《初中數學一步到位》基礎篇 / 基礎篇 + 拓展篇
接下來具體給大家講每個階段的課程内容,一定要認真看,特别是每個階段的 " 适合人群 "要認真閲讀哦,選到不合适的課,對孩子幫助就沒那麼大了。
0-2《小學數學一步到位》
課時數:40 節視頻課,20-30 分鍾 / 節
配套教材:4 本紙質講義 +4 本紙質練習冊(含答案)
這個階段的課程,主要是為了通過對算理、算法的深入學習打下扎實的計算功底,培養孩子的數學興趣和正确的數學學習方式。
課程中涉及到的很多數學思想,比如對應思想、化歸思想、統計思想等等,不僅給當前數字知識學習打下堅實基礎,甚至為未來初、高中函數的學習做好了鋪墊和準備。
▲ 部分課程内容
适合兩類孩子:
1、大班到二年級的孩子,夯實基礎
從學習數學的第一節課起,就按照正确的理念學習,回歸數學的本質,培養數學思維能力。
2、三到四年級的孩子,回顧加深,查漏補缺
0-2 中有很多簡單但深刻的基本概念,這些最基本的内容的深入理解,對後續數學學習極其重要。
許多三、四年級的學生學習四則混合運算及巧算遇到一定困難,雖然在一二年級時校内滿分,但因為并沒有理解加、減、乘、除中的一些深刻的原理,從而造成了三四年級成績的下滑。這時候更應該回過頭來把基礎中的漏洞補上。
3-6《小學數學一步到位》
課時數:120 節視頻課,30-40 分鍾 / 節
内容涉及計算、組合、計數、應用、幾何、行程、數論七大模塊,涵蓋小學奧數所有知識模塊。既能幫助孩子們深入掌握課内知識,确保校内高分,也能帶孩子學透小升初核心模塊,決勝擇校及分班考,為初高中學習做好準備。
大家可以看到,那些其中核心的數學思想是貫穿始終的。
1、所有 3-6 年級學生
特别是重點關注有小升初、初中分班考需求以及關注初高中學習的學生。
2、基礎較差的初中生
小學和初中知識緊密相連,初中代數式運算遇到問題往往是小學階段數的性質沒有學透而埋的禍根,基礎較差的初中生想要提升成績,必須先回到小學階段查缺補漏。
7-9《初中數學一步到位》
初中數學課程分為基礎篇和拓展篇,既幫助學生考上高中,更關注高中數學學習需求,為高中階段學習更抽象、更復雜的函數内容做好準備。
基礎篇:122 節視頻課,30-40 分鍾 / 節
拓展篇:50-60 節視頻課,更新中,4 月完成更新。
分别适合這樣的孩子:
基礎篇:适合所有初中生
同步及深入講解初中課内所有知識,涵蓋初中課内所有基本概念、數學思想及中考重要題型
拓展篇:适合基礎較好的初中生。
适合校内離滿分 10 分以内差距,自招重點板塊的難題講解及思維拔高。
常見問題
問
胡老師的這套課程有涉及到淺奧嗎?還是同步課内容呢?
答
0-2 和 3-6 是課内到淺奧,并非同步校内内容。7-9 基礎篇同步校内,7-9 拓展篇目标自招,含部分初聯中的簡單題。
3-6 大概對應高思導引什麼難度?
2-4 星,深入理解後,許多 5 星題也可以做。
這個課适合拔尖的孩⼦,還是基礎薄弱的孩子?
小學是 " 課内到淺奧 " 一體化的,從課内講到淺奧,既向下兼容,又向上拔高,基礎薄弱的孩子建議降級學習,可以适用,拔高也适用。
初中 7-9 基礎篇面對中考,拓展主要針對自招,基礎篇每個孩子都要看,拓展篇只适合拔尖的孩子。
課程适合所有教程版本嗎?例如人教版和北師大的 ?
适合所有版本。
課程标準全國是統一的,也是 " 三位一體 " 的,即課程标準指導教材編寫、課堂教學和考試命題。不同的版本只是順序的差異,按照學校學習順序挑選對應的章節學習即可。
最後," 數學就是數學 ",數學的基本概念和思想方法哪裏都是通用的,所以許多海外的朋友也都在使用這套教材。
我們應該從幾年級開始學習?
建議從某個階段的第一講開始從頭學習。比如,買了 3-6 的從 3 年級第一講開始學習。
當前基礎薄弱的同學,可以考慮再降一級學習,如 7 年級基礎薄弱的同學,可以考慮用 3-6 查缺補漏;
基礎非常扎實的同學,可以用後一階段的内容做預習,比如 6 年級提前學習 7-9 的内容。
孩子報名思維課程後,還需要參加
别的補習班嗎?
如果吃透了胡⽼師的内容,⼀般不需要
課程能提升孩子什麼?
簡單而言,這個課程的核心是通過對概念和思想的深度講解,培養學生舉一反三的能力。
可以單獨買 7-9 拓展篇嗎?
不能。7-9 的基礎篇中對初中概念的思想的講解很深刻,需要每個孩子都學習過。在學有餘力的前提下,可以繼續銜接拓展篇。
- 本文包括廣告、推廣内容,請理性消費 -
團購詳情
團品:
胡小群講數學
0-2《小學數學一步到位》499 元
3-6《小學數學一步到位》899 元
7-9《初中數學一步到位》基礎篇 899 元
7-9《初中數學一步到位》基礎篇 + 拓展篇1698 元
參團方式:
點擊以下小程式進入東西嚴選店鋪參團!
注意事項:
關于課程開通:下單即開通課程,先務必在微信 " 小鵝通 " 小程式中綁定手機号,綁定完成後即可收聽。
關于退換貨:7 天無理由退款,教材全新需寄回,如教材已使用,退款需扣除教材費