今天小编分享的财经经验:大模型追不上了?不妨尝试把主战场放在垂直模型,欢迎阅读。
图片来源 @视觉中国
文 | 适道
这两天,Sora 横空出世让字节也跟着上了热搜。有传言称,字节跳动在 Sora 引爆文生视频赛道之前,已经研发 " 中文版 Sora":一款名为 Boximator 的创新性视频模型。紧接着,字节快速辟谣,积极否认。
从阴谋论角度来看,有没有一种可能是字节在蹭 Sora 的热度。说句扎心的话,这个谣言不辟也罢。毕竟字节的 " 套壳 " 尴尬还历历在目:2023 年 12 月,外媒 The Verge 曝出字节正在秘密研发一个被称为 " 种子计划 "(Project Seed)的 AI 大模型项目。据称该项目在训练和评估模型等多个研发阶段调用了 OpenAI 的应用程式接口(API),并使用 ChatGPT 输出的数据进行模型训练。
虽然数据 " 套壳 " 并不少见,但也传递出了一个信息:独角兽排名压过 OpenAI 的字节在大模型上尚有如此表现,国内初创企业可以暂别大模型了。
算力、数据、钱,哪个都缺。这不是死磕不死磕的态度问题,是磕死也磕不动的现实问题。但 AI 创业又是大势所趋,如果不想 " 套壳 ",可以看看垂直模型。
在 OpenAI 畅通无阻的大洋彼岸,垂直模型也一直备受关注。PitchBook 最新数据,2023 年 691 笔 AIGC 交易投资额达到创纪录的 291 亿美元,比 2022 年增长了 268.4%。报告显示:虽然投资者大部分注意力集中在以 OpenAI 和 Anthropic 为代表的大模型提供者。但随着市场成熟,注意力正转向特定行业垂直领網域的应用——垂直模型。
硅谷的顶级风投 Greylock 也注意到一些以垂直服务为重点的初创公司,正在跳出传统的 SaaS 思维。这些公司采用了嵌入支付(例如 Toast 和 Shopify)、广告(例如 Pepper 和 Provi )以及 B2B 市场(例如 Faire 和 Novi)等战略。人工智能将加速这种转变。
对此,Greylock 指出:" 现在是 AI 垂直軟體最好的时代 "。
范式转变:AI 绕过 " 前 SaaS" 阶段
长期以来,国内 SaaS 的疲软不能全怪环境,因为其本身就是投入长,见效慢,增长速度受限。
专注 SaaS 投资的 Point Nine Capital 创始人 Christoph Janz 表示:" 我和许多其他创始人、投资者在大约 15 年的 SaaS 投资经历中学到了一条教训——大多数企业采用新技术的速度极其缓慢。目前,大约 58% 企业軟體支出仍然流向本地解决方案。"
在美国,即便过去十年跑出了 Toast、Shopify、Procore 和 ServiceTitan 等数十个赢家。但从数据来看,截至 2021 年,Toast 仅在 6% 美国餐厅中使用;ServiceTitan 在核心 TAM 渗透率为 1%;就连 CRM 也是花了 15 年才达到其临界点。
" 用不了 " 是主要原因。在早期技术时代,垂直軟體只能用于已经具有清晰结构化数据的公司。但世界上约 80% 数据非结构化——各种合同、记录以及跨文本、音频和影像的多媒体檔案。
现在,大模型已经能处理非结构化数据。Christoph Janz 认为:" 这意味范式将会发生转变——此前数字化发展缓慢的行业很可能绕过 " 前 SaaS" 阶段,直接步入 "AI 解决方案 " 阶段。"
切勿盲目:一头扎进垂直模型不可行
不过,必须是大模型吗?
一方面,大模型进步神速,随时会断掉初创公司的粮草。例如,在 OpenAI 开放 Whisper 的 API 后,ASR 公司 Deepgram 突然黑暗降临,两度裁员。而该公司开发的专有模型能够在不到 1/3 秒内识别和转录语音,最佳条件下的准确率高达 98%。
另一方面,国内真正的大模型目前还没卷起来,留给初创公司一部分空间和时间;此外,大模型不是产品,能落地到具体应用场景才算数。有媒体报道:一位 AI 大模型创业者说,他近期询问了不少企业客户,得到的回应是:" 大模型能做什么?能帮我裁员还是能帮我赚钱?"(财经十一人)
更精准的解决方案等于更快的投资回报,而垂直模型的优势正在于此。
首先,与大模型相比,垂直模型通常涉及较小数据集,较少的计算,节约成本和时间;其次,基于垂直模型的产品针对特定细分市场,可以为企业量身定制解决方案。
Pender Ventures 合伙人 Isaac Souweine 表示:" 垂直模型具有更高的盈利潜力,这对投资者更具吸引力 "
然而,一头扎进垂直模型很不明智。
第一个 " 老大难 " 问题:TMT(Total Available Market,潜在市场规模)太小。
" 更专业 " 代表 " 更狭窄 "。Lux Capital 合伙人 Grace Isford 表示:即便是一个成熟的垂直领網域,新技术采纳也需要时间。而一些小众垂直軟體产品销售周期则会挑战风投的投资期限。
因此,相关创业公司应该对资本效率非常敏感,谨慎考虑融资机会和烧钱速度,以免成为 " 风投孤儿 "。
第二个 " 必解决 " 问题:创业者不能只理解基础模型工作原理,应该投入大量时间深入行业,了解客户需求。
对投资人的要求同样如此,Northzone 负责人 Molly Alter 表示:对风投而言,在垂直人工智能领網域,行业专业知识比生成式人工智能知识更为重要。如果不理解特定市场的运作方式,投资人无法找到真正解决实际问题的初创公司。
投资框架:六个维度圈出最佳创业公司
Greylock 指出:只要深入专业领網域,就可以建立起壁垒。但任何垂直领網域要想取得大规模成功,关键在于选择一个适合该技术的行业,准确评估 TAM,构建深入的产品工作流程和数据,设计适当的 GTM 策略,并拥有领網域专业知识和技术实力。
对此,Greylock 为提出了一个投资框架,并对以上六个要素进行了深入探讨,适道在保留原意情况下,进行简译。
1. 数据:好数据胜过好模型
随着基于 LLMs 构建 AI 应用难度降低,数据将成为建立垂直服务差异化的最关键因素。
第一步:初创公司要确定垂直行业或工作流程是否需要非常大的数据集 / 是否有能力构建专有的数据资产。
对一些公司而言,使用自有数据训练或微调可商用的基础模型具有战略意义。Greylock 认为,企业在形成最初的壁垒过程中,获取数据至关重要。但最终,只有客户使用产品时所产生的数据才能形成长期壁垒。
因此,请关注使用产品过程中自然产生行为数据(例如,客户标记自己的行为数据或与产品互動产生的数据集)。
目前,对于许多垂直行业而言,数据还留在杂乱的传统系统中,而这正是 Greylock 对处理和提取数据公司格外感兴趣的原因。一些大型科技公司已经开始提供为客户合成所需数据的服务,将合成数据用于模型训练,以实现快速交付的目标。
2. TAM: 快速找到垂直行业入口
垂直市场的 TAM 显然不大,但有失必有得:较小的市场竞争对手也更少,越专注可以获得优势布局、更纵深的市场集中度。
鉴于医疗保健、金融服务等多个基础行业高度碎片化,一个行业可能藏着许多机会。同时,这些行业规模庞大,意味着即便再狭窄,也会形成一个可观市场。
如何找到垂直行业的入口?看看哪些子分支——未被竞争对手触及、对 AI 有明确需求、最适合基于 LLM 的工具,以及考虑你自己最适合提供的技术。
Greylock 认为:虽然我们难以对新兴或正在转型(能源电气化)市场的支出进行量化,但这些市场往往又是投资者喜欢争论的领網域。因此,早期参与垂直軟體服务的创始人有潜力定义并领导市场。
3. ACV: 开发多种产品和收入来源
单一 SaaS 产品不太能实现六位数的 ACV(Annual Contract Value 单年合同额)。
初创企业可以同时开发多种产品,并在核心产品之外创造额外收入来源进行扩张。在核心产品的基础上增加新的产品线,在未来某个时间点捆绑、增加销售,最终形成粘性。
例如,餐饮支付平台 Toast 通过增加工资和劳动力管理功能,实施了多产品战略。Provi 和 Pepper 等 B2B 市场通过广告创造了额外的收入来源,而太阳能安装平台 Aurora Solar 则通过提供融资方案获得了额外收入。建筑服务平台 Procore 最近也开始提供保险等服务。
4. 创始人:具有领網域经验的产品构建者
与构建 AI 堆栈其他部分的创始人不同,试图构建垂直 AI 的纯技术人员在具有领網域经验和技术背景的创始团队面前处于劣势,特别是在受监管行业中的团队。
如果你的目标客户是垂直行业中的传统组织,这一差距尤为显著。毕竟这些组织通常与数十甚至数百个实体绑定了长期合同。
因此,只有深入了解复杂性,才能制定正确的营销推广策略、预测销售时间表和招聘计划表。
Greylock 非常欢迎具备深厚领網域专业知识,但不太了解垂直入口的创始人。
5. GTM:尽量制造紧迫感
垂直销售周期可能很长,尤其是在缓慢增长且技术购买者较为保守的大型成熟行业。因此,GTM(Go-to-Marke)战略必须创造紧迫感,即 FOMO ( Fear of Missing Out ) 来主导主要的分销渠道。
Greylock 认为,在过去,那些没有采取 FOMO 策略的垂直企业需要花费很长时间才能看到业绩起飞。
目前,人们对 AI 的 FOMO 让用户更愿意马上尝试新产品。一方面,AI 吸引力让初创公司很容易与潜在客户通搭上话,并进行试用。另一方面,潜在客户试了不止你们一家,他们可能已经累了。但不管怎样,让潜在客户产生 FOMO 就是关键。
6. 产品:AI 代理超越 Copilot
如今,占主导地位的范式是人类与 AI Copilot 配对:人类做大部分工作, AI Copilot 打辅助。
在接下来的几年中,预计会看到更多反例—— AI 代理执行大部分工作,人类只需要检查、编辑、输出。
Greylock 对这个新兴领網域作为初创企业的切入点非常兴奋:因为 Copilot 可能会被已经拥有分销权的现有竞争者主导,而 AI 代理则是一个更开放的机会。能够思考、推理并代表人类行动的 AI 代理也是迈向完全自动化未来激动人心的一步。
这种范式转变将对未来企业产生巨大影响。随着 AI 代理替代更多熟练劳动力,軟體支出将取代人力成本。反过来,预计会有更新的基于使用或结果的定价模型,这是另一个需要探索的原型。
结论
无论是从落地可能性,还是从国内大模型现状来看,都留给垂直模型一定空间。
一方面,细分行业的选择至关重要。例如 Deepgram 的陨落主要是语音识别赛道挤满了竞争者,即便没有 OpenAI 的 Whisper,还有 Google、Microsoft 和 Amazon。毕竟,现在的逻辑不是 " 首发者必胜 ",碰上这些大佬,初创公司只有躲着的份儿。
另一方面,热钱涌入时,估值本身虚高。与其说 Jasper 之流 " 陨落 ",不如说其回归了正确位置。当一个本应基于细分市场,做差异化的公司错把自己定位成 " 通用型 ",而且套的还是 ChatGPT 的 " 壳 ",怎么看都是错位。
不过,对投资人而言,由于较小的增长前景和较高的专业要求,也意味着未来垂直模型领網域的 " 泡沫 " 吹不起来。